a2 United States Patent

US009165008B1

(10) Patent No.: US 9,165,008 B1

Ramesh et al. 45) Date of Patent: Oct. 20, 2015
(54) SYSTEM AND METHOD FOR DATA (56) References Cited
COMPRESSION USING A DYNAMIC
COMPRESSION DICTIONARY U.S. PATENT DOCUMENTS
s . 5,534,861 A * 7/1996 Ch tal. i 341/79
(71) Applicant: Teradata Corporation, Dayton, OH 37392667 A * 1/1997 Bugaski oo ¥
(Us) 5,872,530 A * 2/1999 Domyo et al. 341/106
6,415,295 B1* 7/2002 Feinbergcccocevvevcenennnn. /1
(72) Inventors: Bhashyam Ramesh, Secunderabad (IN); 7,904,432 B2* 3/2011 McKayetal. ... 707/693
Vinupriya Selvamance, Chennai (IN): 20030084041 ALY 52003 Detinger ... 7075
. . retal,
Jaiprakash Chimanchode, 2011/0307440 Al* 122011 Panchenko 707/600
Secunderabad (IN) 2012/0117082 Al* 5/2012 Koperdaetal. . .. 707/748
2012/0296983 Al* 112012 Boehm 709/206
(73) Assignee: Teradata US, Inc., Dayton, OH (US) 2013/0110766 Al* 5/2013 Promhouse etal. 707/607
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
tent is extended djusted under 35
%a.se.ré. lls SZ)((bE):IL; 3 g;yesl. Justed under Primary Examiner — Mariela Reyes
Assistant Examiner — Thong Vu
(21) Appl. No.: 13/711,666 (74) Attorney, Agent, or Firm — James Stover
(22) Filed: Dec. 12, 2012 (57) ABSTRACT
Related U.S. Application Data A system and method .for compres.sing (.1at.a. The system and
o o method employ a static compression dictionary, or look-up
(60) Provisional application No. 61/580,960, filed on Dec. table, containing a predetermined number of uncompressed
28, 2011. data values and corresponding compressed code values for
replacing uncompressed data values with their corresponding
i compressed code values to reduce data storage requirements.
(51) Int.Cl p d code val duce d ge requi
GOG6F 17/30 (2006.01) The system and method further employ a dynamic compres-
e L4 sion dictionary, to which uncompresse ta values and cor-
(52) us.d jon dictionary, to which pressed data val d
CPC oo, GOG6F 17/30153 (2013.01) responding compressed code values are added as required to
(58) Field of Classification Search compress uncompressed data values not contained within the
USPC ... 707/5, 607, 693, 748, 600, 341/51, 106; static compression dictionary.

709/206
See application file for complete search history.

12 Claims, 9 Drawing Sheets

CLIENT | -140
SYSTEM

135
MAINFRAME |~ Y

i !
i PARSING |~130 :
; ENGINE :
i 115 :
! L ' NODES
: 110 110 110 f1oy | 1052p
i f 1 f 2 f 3 f N i
! | PROCESSING PROCESSING PrRocEssING | ... [PRocEssing |
| | MODULE MODULE MODULE MODULE :
! '
: 1204 120, 1204 120y 1
! i
| !
! :
! i

US 9,165,008 B1

Sheet 1 of 9

Oct. 20, 2015

U.S. Patent

M T ooooooooooomoooooo- T
el 2ol Gz bzl m

! 1

! Z MOY € MOY 2 MoY | MOY “

! |

A - > i R

1 Nogi €021 i Lozl |

| |

m IINAOW 3INA0N 31NA0IN IINAON m

i ONISSIIOUd ONISSII0Hd HNISSII0H 9INISSIO0Ud | !

| |

42 | Ngy, 011 %011 on/ |
mm%%_/F_A " i
m m:\ m

| m

“ ANIONS !

! 0s1—1] onISyvd i

m 00N !

fme

A INVHANIVI
001 cel
WILSAS I°OIAd

U.S. Patent Oct. 20, 2015 Sheet 2 of 9 US 9,165,008 B1

320

OPTIMIZER

FIG. 2 FIG.3
SQL REQUEST SQL REQUEST
130\ 205\
i 200 | | 300 !
i | session | ! | InTERPRETER| !
.| conTROL | ! | T s |
| : I S I
! 205 ! :
! Y ~ | | SYNTAX !
' | Parser | | CHECKER i
= I B w3
. [DispatchER] [semanTic |
| | | CHECKER |
““““ i“““‘J | =R
.| DATA DICTIONARY | 1
i CHECKER |
l l

EXECUTABLE STEPS

US 9,165,008 B1

Sheet 3 of 9

Oct. 20, 2015

U.S. Patent

P OId

vD | S3T39NV SOT AYMAYOHE 'S YOS NN
m | Inowd IS IMOH GZGH NI
AN | MHOA MIN HL/G 1SV3 GE I NN
ocb—] W | 09vOHD | 3NNIAY NVDIHOIN HLHON 006 ////////
AN | MHOA MIN JHYNOS SINIL G %///////w
1| 09vaIHo JNHQ HINOYM EEE %//////
G0y — MO oom_osz VS 1S YALLNS mﬁ %//////r////%

US 9,165,008 B1

Sheet 4 of 9

Oct. 20, 2015

U.S. Patent

0¢s
N

i)t ANIOVY

001 | OOSIONVd4 NVS

IO 09VIIHI

010 S3T4ONV SO

100 NHOA MIN

S0~ \

SO

GlG—t

vo | 010 AYMOYOHE S Y0 NN
M | ror 1S IMOH 5251 NN
AN | 100 HLG 1Sv3 e/ 1o
1| ro [3nnaav nvaiHoin Hson 00s NN
AN | 100 JHVNOS STWIL NN
| 1o JNHA HINOVM €58 ////////
v0 ow F 1S ¥3LLNS 0€} NN

U.S. Patent Oct. 20, 2015 Sheet 5 of 9 US 9,165,008 B1
FIG. 6
(~ o0
Rl 130 SUTTER ST. SAN FRANCISCO | CA
NN 333 WACKER DRIVE CHICAGO IL_| 620
NN 241 WEST SOUTH ST. KALAMAZOO | mI
NN 5 TIMES SQUARE NEW YORK | NY
NN 900 NORTH MICHIGAN AVENUE | CHICAGO IL
NN 135 EAST 57TH NEW YORK | NY | 625
NN 70000 INNOVATION DR MIAMISBURG | OH |
Nlnim|w 1525 HOWE ST. RAGINE Wi
N 304 S. BROADWAY LOS ANGELES | CA
\605
/840

NN 130 SUTTER ST. 100 | CA
NN 333 WACKER DRIVE o1 [I /650

S Y 241 WEST SOUTH ST. 000 | MI | KALAMAZOO
Nk 5 TIMES SQUARE 001 | NY
NN 900 NORTH MICHIGAN AVENUE | 011 | 1L
NN 135 EAST 57TH 001 | NY /655
NN 10000 INNOVATION DR 000 | OH | MIAMISBURG
NI 1525 HOWE ST. 101 | wi
NN 304 S. BROADWAY 010 | CA

NEW YORK 001
LOS ANGELES 010
GHICAGO 011
SAN FRANCISCO | 100
RACINE 101

U.S. Patent Oct. 20, 2015 Sheet 6 of 9 US 9,165,008 B1
FIG.7
g [71 0

R 130 SUTTER ST. 1100 | CA
Rl TN 333 WACKER DRIVE 1011 | IL
NN 241 WEST SOUTH ST. 0001 | MI
Run 5 TIMES SQUARE 1001 | NY
NN 900 NORTH MICHIGAN AVENUE | 1011 | IL
A 135 EAST 57TH 1001 | NY
NN 10000 INNOVATION DR 0010 | OH
N Tnv 1525 HOWE ST. 1101 | Wi
LI 304 S. BROADWAY 1010 | CA

< 720 TN \705

NEW YORK 001
LOS ANGELES 010
CHICAGO 011
SAN FRANCISCO | 100
RACINE 101

730 —\

KALAMAZOO 001
MIAMISBURG 010

U.S. Patent Oct. 20, 2015

Sheet 7 of 9

US 9,165,008 B1

FIG. 8
g 810~\
ROW NUMBER | ORDER_ID | PRODUGT 1D | PRODUCT_QUANTITY
1 100 R1 i
2 100 R? >
3 150 R1 3
1 500 R2 4
5 200 R1 3
5 NULL R1 5
7 250 R2 7
8 450 R1 1
9 550 1 >
10 500 R1 4
11 450 R1 5
12 250 R? 4
¢
N
SCD:

INDEX | VALUE

001 100

010 | 150

011 200

100 | 250

820
DCD:

INDEX | VALUE

001 500

010 | 450

011 550

<30

US 9,165,008 B1

Sheet 8 of 9

Oct. 20, 2015

U.S. Patent

(N

016
086
B ot NG
1001 10O} 062 002 | U'L

0L0L 1000 LLOL 000L 00+ 0100 L10O 1000 0100 00kt | 310H 055 0S¥ | 005 | ogy gof | pd | + | O68}
(LH9IY 0L 1431 avay) b g Z | (97 41) 3LA4 Q AN al
5118 NOISSTHAINGD | 370H | IMVA | 3nTYA [3NT¥A | 30TVA | AYYNOILIIG | NOISSIHAWOI | o/ iiva | moy

0LNY 4 | dy | Tdy | TdD | NOISSIHAINGD 0LNY
mom\\

)

6 'Ol

U.S. Patent Oct. 20, 2015 Sheet 9 of 9 US 9,165,008 B1

11
1101 ~ 1103
UNENCODED DATA VALUE SCD
¢ NEW YORK [001
SEARCH IN SCD FOR LOS ANGELES [010
UNENCODED DATA VALUE CHICAGO 011
1110 SAN FRANCISCO[100
RACINE 101
1120 ¢
REPLACE UNENCODED
UNENGODED DATA VALUE WITH
VALUE FOl?JND COMPRESSED VALUE
IN SCD* 30— FROM SCD
1150\ ¢
SEARCH IN DCD EOR STORE COMPRESSED
UNENCODED DATA VALUE DATA VALUE FROM SCD
1160 MMO
UNENCODED
VALUE FOUND
IN DCD?
NO [1170
ADD UNENCODED 50D
DATA VALUE AND
CORRESPONDING KALAMAZOO [001
CO'V'PFEFEOS%%% VALUE MIAMISBURG [010
¢ 1180 k1105
REPLACE UNENCODED
| DATAVALUE WITH

COMPRESSED VALUE [
FROM DCD

Y

STORE COMPRESSED FIG. 10
DATA VALUE FROM DCD | 1190

US 9,165,008 B1

1
SYSTEM AND METHOD FOR DATA
COMPRESSION USING A DYNAMIC
COMPRESSION DICTIONARY

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) to
the following commonly-assigned patent applications, which
are incorporated herein by reference:

Provisional Patent Application Ser. No. 61/580,960,
entitled “SYSTEM AND METHOD FOR DATA COM-
PRESSION USING A DYNAMIC COMPRESSION DIC-
TIONARY,” filed on Dec. 28, 2011, by Bhashyam Ramesh,
Vinupriya Selvamanee, and Jaiprakash C.

FIELD OF THE INVENTION

The present invention relates to methods and systems for
compressing electronic data for storage or transmission; and
in particular to improved value list compression techniques
for compressing data stored in database tables including col-
umn partitioned tables.

BACKGROUND OF THE INVENTION

The amount of data generated, collected and saved by
businesses is increasing at an unprecedented rate. Businesses
are retaining enormous amounts of detailed data, such as call
detail records, transaction history, and web clickstreams, and
then mining it to identify business value. Regulatory and legal
retention requirements add to this burden by requiring busi-
nesses to maintain years of accessible historical data.

As businesses enter an era of petabyte-scale data ware-
houses, advanced technologies, such as data compression, are
increasingly utilized to effectively maintain enormous data
volumes in the warehouse. Data compression reduces storage
cost by storing more logical data per unit of physical capacity.
Performance is improved because there is less physical data
to retrieve during database queries.

One current technique for compressing data, known as
Value List Compression, may be applied to compress column
data within a database table. A set of values are identified in a
dictionary and any occurrence of a dictionary value in a row
is compressed in the sense it is not recorded in the row, but a
pointer to the dictionary value is recorded in the row header.
An occurrence of a value that is not in the dictionary is stored
as an uncompressed value.

Value List compression techniques can also be applied to a
column partitioned table which stores multiple column values
in a row. Such rows are called container rows in this docu-
ment. Two sets of structures exist in a container row for this
purpose: a fixed length compression dictionary, called static
compression dictionary, SCD; and a list of uncompressed
values, called the uncompressed column value list.

After a container row has been auto-compressed and
stored, values that arrive later for insertion into the table that
are not available in the SCD are no longer added to the SCD,
but are appended to the uncompressed column value list in the
container row. The uncompressed value list is in the order of
data arrival and therefore in the order of row-id. The uncom-
pressed column value list is not sorted and built dynamically
as values are inserted. In a container row there are some bits
for each base table row value that is stored in the container
row. These bits include information such as where the value is
recorded in the row, whether the value exists or is NULL,

10

25

30

40

45

2

whether the value exists in the dictionary or is uncompressed
and so on. These bits are collectively called “auto compres-
sion bits” in this document.

The above structure and method for compressing container

row data have the following drawbacks:

1. Access to an uncompressed value in a container row is
expensive since two passes are needed to process the
auto compression bits—a first pass to determine if a
value is compressed; and if not, a second pass to deter-
mine the value’s positional number within the uncom-
pressed value list.

2. Inefficient compression. When a new value is stored as
an uncompressed value it can only be added to the
uncompressed list since the storage structure is a posi-
tional list.

3. Access to an uncompressed value degrades linearly with
the number of values in the uncompressed list.

4. If a compressed value in a row is modified to an uncom-
pressed value, the modification cannot occur in place.
Instead the old row must be deleted and a new row must
be inserted with a different row-id.

Described below is an improved database compression

scheme that overcomes the disadvantaged discussed above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a node of a database system.

FIG. 2 is a block diagram of a parsing engine.

FIG. 3 is a flow chart of a parser.

FIG. 4 is a representation of rows in a database table.

FIG. 5 is arepresentation of a prior art use of a compression
dictionary.

FIG. 6 is arepresentation of a prior art use of a compression
dictionary, wherein not all values in the compressible field are
included in the compression dictionary.

FIG. 7 is a representation of a process for compressing
database table data utilizing a static compression dictionary
and dynamic compression dictionary in accordance with the
present invention.

FIGS. 8 and 9 provide a representation of a process for
compressing database table column data into a container row
utilizing a static compression dictionary and dynamic com-
pression dictionary in accordance with the present invention.

FIG. 10 is a simple flowchart illustrating a process for
compressing data in accordance with the present invention

DETAILED DESCRIPTION OF THE INVENTION

In the following description, reference is made to the
accompanying drawings that form a part hereof, and in which
is shown by way of illustration specific embodiments in
which the invention may be practiced. These embodiments
are described in sufficient detail to enable one of ordinary
skill in the art to practice the invention, and it is to be under-
stood that other embodiments may be utilized and that struc-
tural, logical, optical, and electrical changes may be made
without departing from the scope of the present invention.
The following description is, therefore, not to be taken in a
limited sense, and the scope of the present invention is defined
by the appended claims.

Environment

The technique for coding compressible database fields dis-
closed herein has particular application, but is not limited, to
large databases that might contain many millions or billions
of records managed by a database system (“DBS”) 100, such

US 9,165,008 B1

3

as a Teradata Active Data Warehousing System available
from Teradata Corporation. FIG. 1 shows a sample architec-
ture for one node 105, of the DBS 100. The DBS node 105,
includes one or more processing modules 110, ,, con-
nected by a network 115, that manage the storage and
retrieval of datain data-storage facilities 120, ,. Eachofthe
processing modules 110, . may be one or more physical
processors or each may be a virtual processor, with one or
more virtual processors running on one or more physical
processors.

For the case in which one or more virtual processors are
running on a single physical processor, the single physical
processor swaps between the set of N virtual processors.

For the case in which N virtual processors are running on
an M-processor node, the node’s operating system schedules
the N virtual processors to run on its set of M physical pro-
cessors. If there are 4 virtual processors and 4 physical pro-
cessors, then typically each virtual processor would run on its
own physical processor. If there are 8 virtual processors and 4
physical processors, the operating system would schedule the
8 virtual processors against the 4 physical processors, in
which case swapping of the virtual processors would occur.

Each of the processing modules 110, ,, manages a
portion of a database that is stored in a corresponding one of
the data-storage facilities 120, .. Each of the data-storage
facilities 120, . includes one or more disk drives. The DBS
may include multiple nodes 105, , in addition to the
illustrated node 105,, connected by extending the network
115.

The system stores data in one or more tables in the data-
storage facilities 120, ,.Therows 125, ,ofthetablesare
stored across multiple data-storage facilities 120, , to
ensure that the system workload is distributed evenly across
the processing modules 110, .. A parsing engine 130
organizes the storage of data and the distribution of table rows
125, _, among the processing modules 110, .. The
parsing engine 130 also coordinates the retrieval of data from
the data-storage facilities 120, ,, in response to queries
received from a user at a mainframe 135 or a client computer
140. The DBS 100 usually receives queries and commands to
build tables in a standard format, such as SQL.

In one implementation, the rows 125, are distributed
across the data-storage facilities 120, ,, by the parsing
engine 130 in accordance with their primary index. The pri-
mary index defines the columns of the rows that are used for
calculating a hash value. The function that produces the hash
value from the values in the columns specified by the primary
index is called the hash function. Some portion, possibly the
entirety, of the hash value is designated a “hash bucket”. The
hash buckets are assigned to data-storage facilities 120,
and associated processing modules 110, 5 by ahash bucket
map. The characteristics of the columns chosen for the pri-
mary index determine how evenly the rows are distributed.

In one example system, the parsing engine 130 is made up
of three components: a session control 200, a parser 205, and
a dispatcher 210, as shown in FIG. 2. The session control 200
provides the logon and logoff function. It accepts a request for
authorization to access the database, verifies it, and then
either allows or disallows the access.

Once the session control 200 allows a session to begin, a
user may submit a SQL request, which is routed to the parser
205. Asillustrated in FIG. 3, the parser 205 interprets the SQL
request (block 300), checks it for proper SQL syntax (block
305), evaluates it semantically (block 310), and consults a
data dictionary to ensure that all of the objects specified in the
SQL request actually exist and that the user has the authority
to perform the request (block 315). Finally, the parser 205

10

15

20

25

30

35

40

45

50

55

60

65

4

runs an optimizer (block 320), which develops the least
expensive plan to perform the request.

Value List Compression

An example of a table with a compressible field, illustrated
in FIG. 4, includes rows, such as row 405; and fields, includ-
ing a StreetAddress field 410, a City field 415, a State field
420, and other fields 425, such as indices, names, etc. As can
be seen in FIG. 4, the City field has multiple instances of
“New York,” and “Chicago.” Such a field is a compressible
field because it can be compressed by representing each value
in the field with a code that corresponds to the value.

In a typical existing system, an example of which is shown
in FIG. 5, the compressible field in a table 505 is replaced by
a code field 510. The code field includes a code, such as the
binary bit sequence shown in FIG. 5, which represents the
compressible field value associated with that row. For
example, the value “Chicago” shown in row 430 of FIG. 4 is
represented by the binary code “011” in row 515 of FIG. 5.

In some existing systems, a look-up table, or compression
dictionary, 520 is provided to translate the code to the com-
pressible field value. In relational databases using SQL, the
compression dictionary 520 is frequently joined with the
original table 505 during execution of queries that select
information from the compressible field.

FIG. 6 provides an example of a database system for coding
compressible fields using a compression dictionary, wherein
not all values in the compressible field 610 in table 605 are
included in the compression dictionary. The values not
included in the compression dictionary may be less common
values, or new values not contained in the original range of
values and added to the field after creation of the compression
dictionary. Table 605 illustrates the table prior to compression
of values contained in field 610, and table 635 shows a table
following the application of value-base compression using
compression dictionary 660. Table 605 is similar to the table
illustrated in FIG. 4, with the exception of two rows, identi-
fied by reference numerals 620 and 625, which include values
in field 610, e.g., KALAMZOO and MIAMISBURG, values
that are not included in the compression dictionary 660.

In table 635, field 610 has been replaced by a code field
640, wherein the values from field 610 have been replaced
with compressed code values from compression dictionary
660 when available. For field 610 values not found in the
compression dictionary, e.g., KALAMZOO and MIAMIS-
BURG, the uncompressed values are appended to the ends of
the rows 650 and 655, and a code, such as “000,” indicating
that an uncompressed value is appended to the end of the row,
is stored in field 640.

FIG. 7 illustrates one embodiment of an improved process
for compressing database table data utilizing both a static
compression dictionary (SCD) 720 and a dynamic compres-
sion dictionary (DCD) 730. Table 705 shows a compressed
version of table 605 following the application of value-base
compression using this improved process. Static compression
dictionary 720 is equivalent to compression dictionary 660
shown in FIG. 6 and discussed above. Dynamic compression
dictionary 730 is a dictionary for uncompressed, or newly
arriving, values. This dynamic compression dictionary is
variable in size, and can grow as values are inserted. Code
field 710 of table 705 contains compressed code values from
static compression dictionary 720 when available and from
dynamic compression dictionary 730 when the values are not
contained in SCD 720. If an uncompressed value is not con-
tained in either dictionary the uncompressed value and a

US 9,165,008 B1

5

corresponding compressed code value is added to the
dynamic compression dictionary.

In the illustrated example table 710, the compressed code
values in code field 710 are represented using a first bit to
specify the dictionary from which the compressed code is
obtained, such as “1” for SCD 720 and “0” for DCD 730,
followed by the compressed code value from the applicable
compression dictionary. As an alternative to using a first bit to
specify the dictionary from which the compressed code is
obtained, the index value itself can be used to differentiate
between the SCD and DCD. For example, ifthe SCD has 100
values, then any index value in excess of 100 represents an
index into the DCD.

Container Row Compression

Teradata Corporation provides a database solution,
referred to as Teradata Columnar, that eliminates perfor-
mance bottlenecks by storing data in columns, unlike most
relational database management systems which only store
data in rows. With a Teradata Columnar database system a
user can mix-and-match columnar and row-based physical
storage to best suit user applications, so that applications get
the right data at the right time. With a Teradata Columnar
database system, only the data in the columns required for a
query are pulled into memory for processing, vastly reducing
the time-constraining input/output (I/O) of a row-based
approach that would read data from all the columns.

Within a Teradata Columnar database system, column-
partitioned data can be stored in a container. A container has
many data values packed into it with a single header. The
physical space is allocated and managed by the Teradata file
system, along with all other space in the Teradata Database.
By filling a container with values from a single column and
applying partition elimination logic, only the columns refer-
enced in a query are read.

As discussed above, Value List compression techniques
can also be applied to data saved in container rows. Similarly,
the improved process for compressing database data utilizing
both a static compression dictionary and a dynamic compres-
sion dictionary, described above for a row-based storage sys-
tem, can be implemented within a columnar system.

Referring now to FIGS. 8 and 9, a process for compressing
database table column data into a container row, utilizing a
static compression dictionary and dynamic compression dic-
tionary, will be described.

Table 805 provides a simple example of sales data for a
business, with each row in the table containing information
for one sales order. Each row includes a row number, an order
ID number, a product ID number, and product quantity. The
values in the Order_ID field column 810 are compressed
using a static compression dictionary 820 and a dynamic
compression dictionary 830, and stored within a container
row 910, shown in FIG. 9, having the container row format
905.

Within container row 910, the static compression dictio-
nary is saved in field 920, the dynamic compression dictio-
nary is saved in fields 930, and the compressed data values
corresponding to the Order_ID values from column 810 of
table 805 are saved in field 940. Access to each dictionary is
direct based on its indexed location. The dynamic compres-
sion dictionary 930 is variable in size and can grow as values
are inserted.

Contents of the dynamic compression dictionary are not
sorted. The DCD is unsorted for a couple of reasons: 1) it is
suitable for large volume inserts; 2) ease of insertion—if the
number of unique value exceeds the SCD size, then infre-

10

15

20

25

30

35

40

45

50

55

60

65

6

quently occurring values are added to DCD but can still be
accessed efficiently; and 3) unlike the SCD, an unsorted DCD
is amenable to modifications.

The compressed values contained in field 940 consist of a
first bit to specify the compression dictionary used during
value compression, and a set of bits to indicate the offset (for
direct access) into the specified dictionary. An offset of zero
indicates a NULL value for the value. If the index is nonzero
and the dictionary bit is set to 1 then the index is a pointer into
the SCD. Ifthe index is nonzero and the dictionary bit s set to
0, then the index is a pointer to a value in DCD. This auto-
compression technique could be used irrespective of the pres-
ence or absence of nulls. Additional presence bit is not
required to represent the NULL; instead the index is set to
zero if the value is NULL.

The improved value list process for compressing data using
a dynamic compression dictionary, and updating the dynamic
compression dictionary, is illustrated in the flowchart of FIG.
10. The process begins with the receipt of an uncompressed
data value 1101. A search for the value in the SCD 1103 is
using a binary search algorithm is conducted in step 1110. If
the uncompressed value is found in the SCD, then the asso-
ciated compressed code value is retrieved from SCD 1103 and
saved, together with a preceding index bit of “1” indicating
the compressed code value was obtained from SCD 1103, as
shown in steps 1120, 1130 and 1140.

If the uncompressed data value is not found in SCD 1103,
a search for the value in DCD 1105 is conducted in step 1150.
If the uncompressed value is found in the DCD, then the
associated compressed code value is retrieved from DCD
1105 and saved, together with a preceding index bit of “0”
indicating the compressed code value was obtained from
DSCD 1105, as shown in steps 1160, 1180 and 1190.

When the uncompressed data value is not found in either
the static or dynamic compression dictionaries, 1103 and
1105, respectively, this “new” uncompressed data value and a
corresponding compressed code value are added to DCD
1105, as shown in step 1170. This new compressed code value
is also saved to data storage with a “0” index bit, as shown by
steps 1170, 1180 and 1190.

It should be noted that the search into the unsorted DCD is
linear and can become expensive for large list sizes. To
address this issue, the search for a value in the DCD should
only be undertaken if the list size is small. For large list sizes,
the new incoming value can be simply appended to DCD. It is
also possible to limit the search to a small percentage of the
DCD, such as the last value added, or some small number of
values.

The size of the dictionary can be ascertained from the “last
used” index for the dictionary. This technique is dynamic
depending upon a tradeoff that can be turned off without
compromising correctness. Alternatively, the size of the DCD
can be set by the user, can be a user-specified percentage of
the SCD, or can be determined by the system based on a
number of parameters not necessarily limited to the container
row size, the number of unique values in the SCD, or the
number of rows represented by the SCD, i.e., the hit ratio of
the SCD.

CONCLUSION

The improved compression technique described herein
increases the level of compression when compared to tech-
niques which store new values in an uncompressed value list
without dictionary support. This is because such lists are
unsuitable for value list compression techniques for newly
arriving (inserted) values that are not in the SCD. The com-

US 9,165,008 B1

7

pression techniques possible in such cases are limited to
run-length, which requires that recurring values be adjacent
to each other, and that a previous value must be located using
a linear traversal of the uncompressed value list.

The improved compression technique described herein can
be combined with other compression techniques, such as Run
Length compression, trim length compression, and multi-
value compression techniques.

The container row compression techniques described
above are not limited to container rows that store a single
column value, and may be applied to multi-column value
container rows, such as a container row that stores Social
Security Number and Employee Number fields (columns)
rather than just the Social Security Number or Employee
Number field (column). These compression techniques can
also be combined with table level compression for a column,
also known as multi-value compression or MVC

Instructions of the various software routines discussed
herein, such as the method illustrated in FIG. 10, are stored on
one or more storage modules in the system shown in FIG. 1,
and loaded for execution on corresponding control units or
computer processors. The control units or processors include
microprocessors, microcontrollers, processor modules or
subsystems, or other control or computing devices. As used
here, a “controller” refers to hardware, software, or a combi-
nation thereof. A “controller” can refer to a single component
or to plural components, whether software or hardware.

Data and instructions of the various software routines are
stored in respective storage modules, which are implemented
as one or more machine-readable storage media. The storage
media include different forms of memory including semicon-
ductor memory devices such as dynamic or static random
access memories (DRAMs or SRAMs), erasable and pro-
grammable read-only memories (EPROMs), electrically
erasable and programmable read-only memories (EE-
PROMs) and flash memories; magnetic disks such as fixed,
floppy and removable disks; other magnetic media including
tape; and optical media such as compact disks (CDs) or digital
video disks (DVDs).

The instructions of the software routines are loaded or
transported to each device or system in one of many different
ways. For example, code segments including instructions
stored on floppy disks, CD or DVD media, a hard disk, or
transported through a network interface card, modem, or
other interface device are loaded into the device or system and
executed as corresponding software modules or layers.

The foregoing description of the invention has been pre-
sented for purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to the
precise form disclosed.

Additional alternatives, modifications, and variations will
be apparent to those skilled in the art in light of the above
teaching. Accordingly, this invention is intended to embrace
all alternatives, modifications, equivalents, and variations
that fall within the spirit and broad scope of the attached
claims.

The invention claimed is:
1. A method for compressing data within a computer sys-
tem, the method comprising the steps of:

receiving, by said computer system, an uncompressed data
value;

searching, by said computer system, for said uncom-
pressed data value in a static compression dictionary,
said static compression dictionary containing a plurality
of uncompressed data values and corresponding com-
pressed code values;

10

15

20

25

30

35

40

45

50

55

60

65

8

if the uncompressed data value is found in the static com-
pression dictionary, replacing the uncompressed data
value with its corresponding compressed code value
from said static compression dictionary and storing the
corresponding compressed code value within a data stor-
age device;
if the uncompressed data value is not found in the static
compression dictionary, searching, by said computer
system, for said uncompressed data value in a dynamic
compression dictionary, said dynamic compression dic-
tionary for storing one or more additional uncompressed
data values and corresponding compressed code values
not contained within said static compression dictionary;

if the uncompressed data value is found in the dynamic
compression dictionary, replacing the uncompressed
data value with its corresponding compressed code
value from said dynamic compression dictionary and
storing the corresponding compressed code value within
said data storage device; and

if the uncompressed data value is not found in the static

compression dictionary and not found in the dynamic
compression dictionary, adding, by said computer sys-
tem, the uncompressed data value and a unique corre-
sponding compressed code value to said dynamic com-
pression dictionary, and storing the unique
corresponding compressed code value within said data
storage device;

wherein said unique corresponding compressed code value

is stored within a column in a database table maintained
on said data storage device and managed by said com-
puter system; and

said static compression dictionary, said dynamic compres-

sion dictionary, and compressed code values contained
within said column in said database table are stored
within a container row.

2. The method for compressing data within a computer
system in accordance with claim 1, wherein:

said corresponding compressed code values comprise a

binary bit sequence having a first bit having a first value
identifying said static compression dictionary as the
source of said corresponding compressed code value,
and a second value identitying said dynamic compres-
sion dictionary as the source of'said corresponding com-
pressed code value.

3. The method for compressing data within a computer
system in accordance with claim 1, wherein:

said corresponding compressed code values comprise a

first range of values maintained within said static com-
pression dictionary, and a second range of values main-
tained within said dynamic compression dictionary.

4. The method for compressing data within a computer
system in accordance with claim 1, wherein said dynamic
compression dictionary has a size set by a user.

5. The method for compressing data within a computer
system in accordance with claim 1, wherein said dynamic
compression dictionary has a size set to a percentage of the
size of said static compression dictionary.

6. The method for compressing data within a computer
system in accordance with claim 1, wherein said dynamic
compression dictionary has a size determined by said com-
puter system based upon one or more computer system
parameters.

7. A computer system, comprising:

a data storage device; and

a processor for:

receiving an uncompressed data value;

US 9,165,008 B1

9 10
searching for said uncompressed data value in a static wherein said unique corresponding compressed code value
compression dictionary, said static compression dic- is stored within a column in a database table maintained
tionary containing a plurality of uncompressed data on said data storage device and managed by said com-

puter system; and

said static compression dictionary, said dynamic compres-
sion dictionary, and compressed code values contained
within said column in said database table are stored
within a container row.

values and corresponding compressed code values;

if the uncompressed data value is found in the static >
compression dictionary, replacing the uncompressed
data value with its corresponding compressed code

Valqe from said static Fompression dictionary and 8. The computer system in accordance with claim 7,
storing the corresponding compressed code value 0 wherein:
within said data storage device; said corresponding compressed code values comprise a
if the uncompressed data value is not found in the static binary bit sequence having a first bit having a first value
compression dictionary, searching, by said computer identifying ;ald static compression dictionary as the
system, for said uncompressed data value in a source of said corresponding compressed code value,
dynamic compression dictionary, said dynamic com- and a second value identifying said dynamic compres-
15 sion dictionary as the source of'said corresponding com-

pression dictionary for storing one or more additional

. pressed code value.
uncompressed data values and corresponding com-

9. The computer system in accordance with claim 7,

pressed code values not contained within said static wherein:
compression dictionary; said corresponding compressed code values comprise a
if the uncompressed data value is found in the dynamic 20 first range of values maintained within said static com-
compression dictionary, replacing the uncompressed pression dictionary, and a second range of values main-
data value with its corresponding compressed code tained within said dynamic compression dictionary.
value from said dynamic compression dictionary and 10. The computer system in accordance with claim 7,
storing the corresponding compressed code value wherein said dynamic compression dictionary has a size set
within said data storage device; and 25 by auser.
if the uncompressed data value is not found either the 11. .The. computer systen iI} acc.or.dance with glaim 7,
static compression dictionary or the dynamic com- wherein said dynamic compression dictionary has a size setto

apercentage of the size of said static compression dictionary.

12. The computer system in accordance with claim 7,

30 wherein said dynamic compression dictionary has a size

determined by said computer system based upon one or more
computer system parameters.

pression dictionary, adding, by said computer system,
the uncompressed data value and a unique corre-
sponding compressed code value to said dynamic
compression dictionary, and storing the unique corre-
sponding compressed code value within said data
storage device; L

